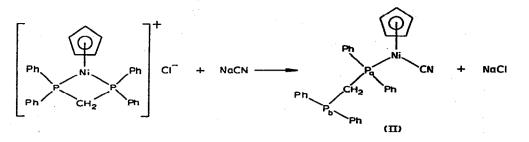

Preliminary communication

 π -Cyclopentadienyls of nickel(II) IX. Reaction of $[\pi$ -C₅ H₅ NiPPh₂ (CH₂)_n PPh₂]⁺Cl⁻ (n = 1, 2, 3 and 4) with aqueous NaCN

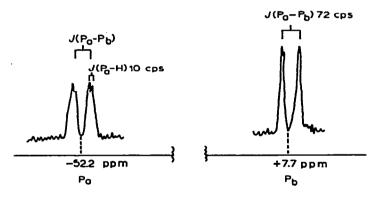
FUMIE SATO, TADAHIRO UEMURA and MASAO SATO Department of Chemical Engineering, Tokyo Institute of Technology, Tokyo (Japan) (Received March 27th, 1972)

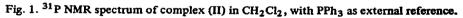
We recently described the preparation of cyano- π -cyclopentadienyl tri-n-butylphosphinenickel, π -C₅H₅NiPBu₃CN, by treatment of π -cyclopentadienylbis(tri-n-butylphosphine)nickel chloride, [π -C₅H₅Ni(PBu₃)₂]⁺Cl⁻, with NaCN in aqueous solution¹.

By analogy, products of the type π -C₅ H₅ NiPPh₂ (CH₂)_n PPh₂ CN (I) would be expected from the reaction between $[\pi$ -C₅ H₅ NiPh₂ P(CH₂)_n PPh₂]⁺Cl⁻² and aqueous NaCN.



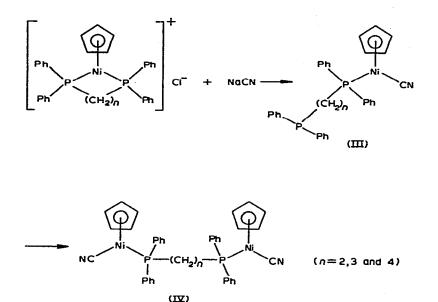
Such complexes are of special interest because they can be regarded as potential metal-containing ligands.


When an aqueous solution of $[\pi$ -C₅H₅NiPh₂PCH₂PPh₂]⁺Cl⁻ was treated at room temperature with an excess of aqueous NaCN, instantaneous reaction occurred and a green precipitate was formed. Extraction of this product with dichloromethane, and recrystallization from a mixture of dichloromethane and n-hexane gave green crystals of the molecular formula π -C₅H₅NiPh₂PCH₂PPh₂CN (II), m.p. 140° (Found: C, 69.34; H, 4.68; N, 2.37. C₃₁H₂₇NNiP₂ calcd.: C, 69.69; H, 5.09; N, 2.62%.)


From the IR and NMR spectra it was calculated that the product was cyano- π -cyclopentadienylmethylenebis(diphenylphosphine)nickel, *i.e.* complex (II).

J. Organometal. Chem., 39 (1972)

The presence of non-equivalent phosphorus atoms (P_a and P_b) in complex (II) is indicated by the ³¹ P NMR spectrum shown in Fig. 1. The peak at δ +7.7 ppm (measured from PPh₃ external reference) was assigned to the non-coordinated phosphorus atom (P_b), and that at δ -52.2 ppm was assigned to the coordinated atom (P_a), since the coordination chemical shift of ³¹ P NMR for phosphine ligands ($\delta_{complex}$ - $\delta_{free ligand}$) is known to be usually negative³. The proton NMR spectrum of (II) in CDCl₃ solution shows bands at τ 2.0-3.0 associated with the phenyl protons of methylenebis(diphenylphosphine), a singlet at τ 4.86 due to the π -cyclopentadienyl protons, and a doublet at τ 6.70 ($J(P_aH)$ 10 cps, $J(P_bH)$ 0) due to the methylene protons of methylenebis(diphenylphosphine).


TABLE 1 PROPERTIES AND ANALYTICAL DATA FOR COMPOUNDS (IV)

Compound	Colour	М.р. (°С)	Analysis found (calcd.) (%)			Proton NMR data b		
			С	H	N	$\tau(\pi - C_5 H_5)$	τ(PPh ₂)	T(methylene protons)
$n=2^{a}$	Green	123	71.20	5.46	3.36	4.86s(10)	2.3~2.8(32)	7.13(br)(4)
n = 3	Green	162	(70.29) 66.56	(5.42) 5.22	(3.28) 4.25	4.91s(10)	2.2~2.8(20)	6.9~8.1(6)
n = 4	Green	190.5	(65.78) 65.34	(5.10) 5.20	(3.92) 4.07	4.82s(10)	2.2~2.7(20)	7.61(br)(4)
			(66.17)	(5.27)				8.10(br)(4)

^a Solvated by two molecules of C_6H_6 . ^b Intensity in parentheses.

J. Organometal. Chem., 39 (1972)

The reactions of $[\pi-C_5 H_5 \operatorname{NiPh}_2 P(CH_2)_n PPh_2]^+ Cl^-$ (n = 2, 3 and 4) with aqueous NaCN, on the other hand, gave the alkylenebis(diphenylphosphine) bridged dinuclear organonickel compounds, (IV). The compounds of type (III) are no doubt involved as intermediates, as indicated in scheme 1.

Scheme 1

Some properties and analytical data of the compounds (IV) are listed in Table 1.

REFERENCES

- 1 M. Sato, F. Sato and T. Yoshida, J. Organometal. Chem., 31 (1971) 415.
- 2 F. Sato and M. Sato, J. Organometal. Chem., 33 (1971) C73.
- 3 L.S. Meriwether and J.R. Leto, J. Amer. Chem. Soc., 83 (1961) 3192; S.O. Grim, D.A. Wheatland and W. McFarlane, J. Amer. Chem. Soc., 89 (1967) 5573.

J. Organometal. Chem., 39 (1972)